腾讯云flink(腾讯云官网登录入口)
173
2022-11-14
本文目录一览:
腾讯的面试流程慢是出了名的,技术面一共三面加hr面总共4面,历时一个半月,倘若要想拿到offer还得加上两周,差不多2个月时间,所以各位有志去鹅厂的同学们一定不要裸辞,不要裸辞,不要裸辞(重要的事情说三遍)。
20210301简历投递(内推)-- 20210310一面(小组长) -- 20210322二面(二线老板)--20210328(GM面)-- 20210404(HR面)
hdfs各个组件(hdfs,yarn,zkfc,journalnode)的作用,namenode ha实现方式
hbase读写流程,常用api
flink架构,任务提交流程,flink的checkpoint,flink实现excatly once(内部与端到端)
clickhouse架构,为什么比其他olap引擎快,sql解析流程
linux为什么叫文件系统,ceph文件系统,常用的bash命令,比如awk等
java相关:jvm架构,gc方法(对比),线程创建的三种方式,synchornized和lock的区别,各自的应用场景,skipList跳表,hashmap
谈项目,讲数据链路(实时与批处理数据),数据规模,数据流量ops这些
kafa如何保证数据一致性(source,broker,sink三个地方)
yarn调度策略,资源管理如何做,权限怎么分配
hdfs小文件问题,hive产生了小文件如何调优,hive数据倾斜原因以及处理方法
针对集群做了哪些优化,调整了哪些参数
简单介绍做过的项目,然后挑一个项目,你担任的角色是这样,主要流程是怎样,产出有哪些,在这过程中遇到了哪些问题,如何解决,你的成长是什么。
另外问了个在职业生涯中遇到的最大事故是什么,当时是如何去解决的,定位问题的方式是怎样,以及后续如何去避免这样的事故
最后瞎聊了下腾讯云的大数据sre团队发展情况,以及员工成长路线,以及base地的transform。
简单个人介绍包括学历背景,工作经历,以及每段跳槽原因,挑一段工作项目详细讲解(虽然她也不一定听得懂,我猜测主要考察表达能力),然后是讲讲对大数据sre岗位的理解,期望薪资,目前竞企offer情况,最后明确告知期望薪资涨幅较大,不会在竞企offer上做大幅调整,最多持平,且具体的方案最快也要一周半才能出来。所以最后还是放弃了鹅厂入职了虾皮。
总的来说,腾讯云的大数据sre面试也是偏基础且贴近个人工作内容,假如小伙伴们平时注重积累的话,去腾讯问题不大。最后预祝跑路的同学们都能拿到理想的offer!
(shopee最近很缺人哦,有想法的同学可查看: ;mid=2247483747idx=1sn=aaf8361ca6fbd47245fd0c92d274eb85chksm=c24ed360f5395a76af2dba45e814bf5cd1d39b739deff18584753d677f96945ef7a6b552ea14token=90945026lang=zh_CN#rd )
健康码是精准的。
健康码实际上是需要进行动态数据的比对和监控的,健康码的实现依赖于规则引擎的运行计算,要支持亿级用户的大规模实时动态查询,离不开大数据技术的支持。从存储角度来看,利用大数据技术的海量存储功能,接近PB级别数据存储和扩容的能力,才能支持健康码亿级用户的数据存储;从计算角度来看,这里最重要的就是ETL和流处理技术,不管是采用Spark架构的内存计算还是利用Flink的流处理模式,其背后少不了需要集合上千台服务器的计算能力,所以阿里云或腾讯云的强大算力在背后发挥了基础性的支撑作用。
健康码的应用涵盖了社区管理、企业复工、交通出行、学校开学、买药登记、超市商场等使用场景,可以协助社区、企业、学校等做好防疫管理及疫情控制等重点工作。在疫情防控和复产复工中,健康码可以实现高效率的人员流动管理,在办公楼、商场、地铁、火车站等人流密集的地点提高过检效率,避免过多的人员接触和聚集。
不能,但是可以通过看行程码,健康码来得知去过什么地方。
行程码就是通信大数据行程卡一个码也相当于健康码,是由中国信通院联合中国电信、中国移动、中国联通三家基础电信企业利用手机接收的数据,通过用户手机所处的基站位置获取,为全国16亿手机用户免费提供的查询服务,手机用户可通过服务,查询本人前14天到过的所有地市信息。
健康码实际上是需要进行动态数据的比对和监控的,健康码的实现依赖于规则引擎的运行计算,要支持亿级用户的大规模实时动态查询,离不开大数据技术的支持。从存储角度来看,利用大数据技术的海量存储功能,接近PB级别数据存储和扩容的能力,才能支持健康码亿级用户的数据存储;从计算角度来看,这里最重要的就是ETL和流处理技术,不管是采用Spark架构的内存计算还是利用Flink的流处理模式,其背后少不了需要集合上千台服务器的计算能力,所以阿里云或腾讯云的强大算力在背后发挥了基础性的支撑作用。
1、大数据平台目前业界也没有统一的定义,但一般情况下,使用了Hadoop、Spark、Storm、Flink等这些分布式的实时或者离线计算框架,建立计算集群,并在上面运行各种计算任务,这就是通常理解上的大数据平台。
2、至于一家企业什么时候需要大数据平台,这取决于这么几方面:
业务需求:业务需求引导是必须的,不能光为了建平台而建平台,建立平台的最终目的是为了服务业务,让业务发展的更好。企业内大数据平台一般是信息管理部门、IT部门承建并承接一些数据需求,业务部门其实不关心你是不是用大数据平台还是用Oracle数据库计算出来的,那么这怎么评估呢?其实主要还是数据量,比如业务部门是不是偶尔会提“去年全年的XX怎么样?”、“去年全年的销售按照渠道、产品类别几个维度进行细分”、“需要用户行为数据、订单数据结合来做用户画像”、“需要给用户打标签”、“设备传感器的数据都有了,需要做实时的故障预测”等等,在承接各种业务需求的时候,是不是偶尔会出现任务运行很久的情况?会不会出现有些需求根本难以实现,因为计算量太大的问题?这就说明,业务上已经有大数据的诉求了,技术上并没有满足。
说到业务需求,企业内的信息管理部门也要注意,自己不能光承担需求,更重要的是要深入业务,理解业务,本部门对技术了解,如果对业务也多了解一下,就能够利用技术优势做到“想业务部门所未想”,实现比业务部门能提出更好的需求,并且能用大数据技术实现这个需求,这时候,信息管理部门的价值就更突出了,在企业内就再也不是一个承接需求或者背锅的部门了。
数据量与计算量:涉及到数据量的评估,也包括2方面:
现有的情况:现在有多少数据?都存储在哪里?业务部门提的各种指标需求,每天需要多长时间计算完成?每天什么时候完成昨天经营情况的数据更新?
增长的情况:每天、每周、每个月的数据增量有多少?按照这个增速,现有的配置还能满足多长时间的需求?
以上2个方面需要综合评估,现有数据量较多或者增长较快,那就需要做大数据平台的打算了。
先进性:本企业在技术上的布局是否需要一定前瞻性?需要早在数据量不太大的时候就进行技术探索?亦或是未来会上马新项目,新项目会产生大量数据。
公有云与私有云的选择:如果企业对公有云比较接受,其实可以考虑直接数据上公有云,公有云在国内主要就是阿里云、腾讯云、百度云等,其中阿里云的技术最为成熟,此外还有亚马逊的AWS等,但这里说的是搭建自己的大数据平台,就不深入展开了。
3、如何搭建大数据平台
建设一个大数据平台不是一朝一夕能完成的,不是下载安装几个开源组件那么简单。
涉及到:
技术层面:如何进行系统架构设计?集群资源如何评估?需要哪些组件?Hadoop、Spark、Tez、Storm、Flink,这些组件有什么区别?它们之间如何有机的组合起来?
团队层面:现有的技术团队配比如何?有没有人力搭建并且运维这个平台?有没有能力运营好这个平台?
对于非常重视主营业务的传统企业,信息技术部门的团队规模一般比较有限,建设一个大数据平台的成本是很高的,这个成本不仅是经济成本,还包括人才投入的成本、时间消耗的成本等等,如何能快速满足企业的大数据平台需求。这时候就可以考虑直接采购商用的大数据平台。
商用的大数据平台,市场上也有很多可以选择,比如星环、华为,此外还有袋鼠云数栈。
数栈的目标是通过产品化的方式,帮助企业构建数据共享能力中心。数栈不仅仅是一个大数据平台,同时附加各类数据处理工具,包括:
开发套件:一站式大数据开发平台,帮助企业快速完全数据中台搭建
数据质量: 对过程数据和结果数据进行质量校验,帮助企业及时发现数据质量问题
数据地图: 可视化的数据资产中心,帮助企业全盘掌控数据资产情况和数据的来源去向
数据模型: 使企业数据标准化,模型化,帮助企业实现数据管理规范化
数据API: 快速生成数据API、统一管理API服务,帮助企业提高数据开放效率
主要特点有:
1.一站式。一站式数据开发产品体系,满足企业建设数据中台过程中的多样复杂需求。
2.兼容性强。支持对接多种计算引擎,兼容离线实时任务开发。
3.开箱即用。基于Web的图形化操作界面,开箱即用,快速上手。
4.性价比高。满足中小企业数据中台建设需求,降低企业投入成本。
有了数栈,企业搭建数据平台就不再是什么问题,核心需求也就会从搭建数据平台转为满足更多的业务诉求,实现真正的企业数据共享能力中心
是否需要搭建大数据团队要看这几个问题了:
1、业务部门有无大数据诉求?这里并不是说业务部门希望使用什么大数据技术,而是说业务部门希望某个模块希望更“智能”,例如有商品推荐、有实时告警、有更快即时的生产经营分析报表……,种种诉求都是业务诉求,但是既有的技术无法支撑,这时候就需要引入大数据技术;通常,业务诉求是大数据的出发点,也是最终目标,也是让老板看到“价值”的地方,如果搭建了大数据团队,研究了大数据技术,却没有解决业务问题,老板会觉得这是成本的浪费。
2、业务部门的诉求细化:业务需求决定技术架构,搭建大数据团队之前,需要先了解业务部门的规划和诉求,基于这个诉求再来设计技术架构,技术架构的设计可以与团队搭建并行,二者相辅相成,大数据的技术框架非常多,没有什么人是精通所有框架的,一般只能精通其中的一两门就不错了。
3、在技术架构设计之前:是否采用独立搭建大数据平台?是否可以采用公有云平台?独立搭建的特点是数据自有,且可以深入研究大数据技术,比较适合规模较大,技术能力强的企业;采用公有云平台,特点是大数据利用的门槛大大降低,已经有封装好的,比较成熟稳定的大数据平台,比如阿里云的数加平台,腾讯云的数智方略等,其中阿里云的技术相对成熟度高一些;
4、技术架构的设计:如果确定不采用公有云的话,就是自己搭建大数据平台,那么就需要理清楚以下几个问题:数据在哪里?需要支撑多大量的数据计算?需要做哪些数据应用?支撑这些数据应用看需要如何做数据治理和分析挖掘?……这里是技术架构了,这并不矛盾,就像刚才说的,技术架构与人才团队建设需要并行。
5、已有团队的人员组成情况:笔者参与的多个项目中都会遇到,对接的客户都是传统企业,对ERP技术挺了解的,写SQL也还行,对传统数仓有一定了解,但是对于最新的大数据技术栈就很不了解了,解决办法有2种,第一是招人,从外面招聘大数据开发或架构师,第二是直接采购商用的易用的大数据平台。
对第一种方法有好处也有坏处:好处是招来的人是自有人员,相当于企业自己掌握了这门技术,这种比较适合金融、运营商或财力雄厚、IT基础设施比较好的大型企业;弊端是招聘可能并不容易,大数据的优秀人才一般集中在互联网领域,跳槽到传统企业的可能并不多。
第二种方法是采购已有的商用平台。市面上有很多成熟的商用大数据平台,Cloudera、星环、华为、袋鼠云、亚信等等,都有对应的产品线,均适用于传统企业。
以袋鼠云大数据平台产品数栈为例说明下商用大数据平台特点:
1、兼容性强:基于开源Spark(离线)、Flink(实时)计算引擎,绑定性不强,很多企业担心被某一家供应商绑定,但数栈完全基于开源,不存在这个问题;
2、简单易用:数栈包含数据开发套件、数据计算引擎(Spark、Flink)、数据治理套件(数据地图、数据质量、数据模型)、数据应用引擎(数据API),覆盖了企业内的数据采集、数据统计分析与挖掘、数据治理、数据开放的全链路,并同时覆盖离线分析与实时分析,满足企业内的各种数据处理需求。
3、性价比高:很多传统企业的数据量其实并不是特别大,例如几百GB、1,2TB,数栈最小支持3台虚拟机部署,与其他厂商动辄几十、上百个节点相比,成本可以降低很多;数栈与搭建大数据团队的关系又是怎样的呢?——数栈是开发团队的生产力工具,有了它可以让开发团队用大数据平台用的更爽,更好,解决需求的速度更快,同时基于开源的技术,开发人员编写MapReduce代码进行运行,可以在数栈上面配置任务调度、依赖关系,查看运行日志,也加快了团队的成长速度,因此数栈的引入,其实是开发团队的一个好帮手,让团队更有效率。
本期目录
DB-Engines数据库排行榜
新闻快讯
一、RDBMS家族
二、NoSQL家族
三、NewSQL家族
四、时间序列
五、大数据生态圈
六、国产数据库概览
七、云数据库
八、推出dbaplus Newsletter的想法
九、感谢名单
为方便阅读、重点呈现,本期Newsletter(2019年1月)将对各个板块的内容进行精简。需要阅读全文的同学可点击文末 【阅读原文】 或登录
进行下载。
DB-Engines数据库排行榜
以下取自2019年1月的数据,具体信息可以参考,数据仅供参考。
DB-Engines排名的数据依据5个不同的因素:
新闻快讯
1、2018年9月24日,微软公布了SQL Server2019预览版,SQL Server 2019将结合Spark创建统一数据平台。
2、2018年10月5日,ElasticSearch在美国纽约证券交易所上市。
3、亚马逊放弃甲骨文数据库软件,导致最大仓库之一在黄金时段宕机。受此消息影响,亚马逊盘前股价小幅跳水,跌超2%。
4、2018年10月31日,Percona发布了Percona Server 8.0 RC版本,发布对MongoDB 4.0的支持,发布对XtraBackup测试第二个版本。
5、2018年10月31日,Gartner陆续发布了2018年的数据库系列报告,包括《数据库魔力象限》、《数据库核心能力》以及《数据库推荐报告》。
今年的总上榜数据库产品达到了5家,分别来自:阿里云,华为,巨杉数据库,腾讯云,星环 科技 。其中阿里云和巨杉数据库已经连续两年入选。
6、2018年11月初,Neo4j宣布完成E轮8000万美元融资。11月15日,Neo4j宣布企业版彻底闭源:
7、2019年1月8日,阿里巴巴以1.033亿美元(9000万欧元)的价格收购了Apache Flink商业公司DataArtisans。
8、2019年1月11日早间消息,亚马逊宣布推出云数据库软件,亚马逊和MongoDB将会直接竞争。
RDBMS家族
Oracle 发布18.3版本
2018年7月,Oracle Database 18.3通用版开始提供下载。我们可以将Oracle Database 18c视为采用之前发布模式的Oracle Database 12c第2版的第一个补丁集。未来,客户将不再需要等待多年才能用上最新版Oracle数据库,而是每年都可以期待新数据库特性和增强。Database 19c将于2019年Q1率先在Oracle cloud上发布云版本。
Oracle Database 18c及19c部分关键功能:
1、性能
2、多租户,大量功能增强及改进,大幅节省成本和提高敏捷性
3、高可用
4、数据仓库和大数据
MySQL发布8.0.13版本
1、账户管理
经过配置,修改密码时,必须带上原密码。在之前的版本,用户登录之后,就可以修改自己的密码。这种方式存在一定安全风险。比如用户登录上数据库后,中途离开一段时间,那么非法用户可能会修改密码。由参数password_require_current控制。
2、配置
Innodb表必须有主键。在用户没有指定主键时,系统会生成一个默认的主键。但是在主从复制的场景下,默认的主键,会对丛库应用速度带来致命的影响。如果设置sql_require_primary_key,那么数据库会强制用户在创建表、修改表时,加上主键。
3、字段默认值
BLOB、TEXT、GEOMETRY和JSON字段可以指定默认值了。
4、优化器
1)Skip Scan
非前缀索引也可以用了。
之前的版本,任何没有带上f1字段的查询,都没法使用索引。在新的版本中,它可以忽略前面的字段,让这个查询使用到索引。其实现原理就是把(f1 = 1 AND f2 40) 和(f1 = 2 AND f2 40)的查询结果合并。
2)函数索引
之前版本只能基于某个列或者多个列加索引,但是不允许在上面做计算,如今这个限制消除了。
5、SQL语法
GROUP BY ASC和GROUP BY DESC语法已经被废弃,要想达到类似的效果,请使用GROUP BY ORDER BY ASC和GROUP BY ORDER BY DESC。
6、功能变化
1)设置用户变量,请使用SET语句
如下类型语句将要被废弃SELECT @var, @var:=@var+1。
2)新增innodb_fsync_threshold
该变量是控制文件刷新到磁盘的速率,防止磁盘在短时间内饱和。
3)新增会话级临时表空间
在以往的版本中,当执行SQL时,产生的临时表都在全局表空间ibtmp1中,及时执行结束,临时表被释放,空间不会被回收。新版本中,会为session从临时表空间池中分配一个临时表空间,当连接断开时,临时表空间的磁盘空间被回收。
4)在线切换Group Replication的状态
5)新增了group_replication_member_expel_timeout
之前,如果某个节点被怀疑有问题,在5秒检测期结束之后,那么就直接被驱逐出这个集群。即使该节点恢复正常时,也不会再被加入集群。那么,瞬时的故障,会把某些节点驱逐出集群。
group_replication_member_expel_timeout让管理员能更好的依据自身的场景,做出最合适的配置(建议配置时间小于一个小时)。
MariaDB 10.3版本功能展示
1、MariaDB 10.3支持update多表ORDER BY and LIMIT
1)update连表更新,limit语句
update t1 join t2 on t1.id=t2.id set t1.name='hechunyang' limit 3;
MySQL 8.0直接报错
MariaDB 10.3更新成功
2)update连表更新,ORDER BY and LIMIT语句
update t1 join t2 on t1.id=t2.id set t1.name='HEchunyang' order by t1.id DESC limit 3;
MySQL 8.0直接报错
MariaDB 10.3更新成功
参考:
2、MariaDB10.3增补AliSQL补丁——安全执行Online DDL
Online DDL从名字上看很容易误导新手,以为不论什么情况,修改表结构都不会锁表,理想很丰满,现实很骨感,注意这个坑!
有以下两种情况执行DDL操作会锁表的,Waiting for table metadata lock(元数据表锁):
针对第二种情况,MariaDB10.3增补AliSQL补丁-DDL FAST FAIL,让其DDL操作快速失败。
例:
如果线上有某个慢SQL对该表进行操作,可以使用WAIT n(以秒为单位设置等待)或NOWAIT在语句中显式设置锁等待超时,在这种情况下,如果无法获取锁,语句将立即失败。 WAIT 0相当于NOWAIT。
参考:
3、MariaDB Window Functions窗口函数分组取TOP N记录
窗口函数在MariaDB10.2版本里实现,其简化了复杂SQL的撰写,提高了可读性。
参考:
Percona Server发布8.0 GA版本
2018年12月21日,Percona发布了Percona Server 8.0 GA版本。
在支持MySQL8.0社区的基础版上,Percona Server for MySQL 8.0版本中带来了许多新功能:
1、安全性和合规性
2、性能和可扩展性
3、可观察性和可用性
Percona Server for MySQL 8.0中将要被废用功能:
Percona Server for MySQL 8.0中删除的功能:
RocksDB发布V5.17.2版本
2018年10月24日,RocksDB发布V5.17.2版本。
RocksDB是Facebook在LevelDB基础上用C++写的高效内嵌式K/V存储引擎。相比LevelDB,RocksDB提供了Column-Family,TTL,Transaction,Merge等方面的支持。目前MyRocks,TiKV等底层的存储都是基于RocksDB来构建。
PostgreSQL发布11版本
2018年10月18日,PostgreSQL 11发布。
1、PostgreSQL 11的重大增强
2、PostgreSQL 插件动态
1)分布式插件citus发布 8.1
citus是PostgreSQL的一款sharding插件,目前国内苏宁、铁总、探探有较大量使用案例。
2)地理信息插件postgis发布2.5.1
PostGIS是专业的时空数据库插件,在测绘、航天、气象、地震、国土资源、地图等时空专业领域应用广泛。同时在互联网行业也得到了对GIS有性能、功能深度要求的客户青睐,比如共享出行、外卖等客户。
3)时序插件timescale发布1.1.1
timescale是PostgreSQL的一款时序数据库插件,在IoT行业中有非常好的应用。github star数目前有5000多,是一个非常火爆的插件。
4)流计算插件 pipelinedb 正式插件化
Pipelinedb是PostgreSQL的一款流计算插件,使用这个创建可以对高速写入的数据进行实时根据定义的聚合规则进行聚合(支持概率计算),实时根据定义的规则触发事件(支持事件处理函数的自定义)。可用于IoT,监控,FEED实时计算等场景。
3、PostgreSQL衍生开源产品动态
1)agensgraph发布 2.0.0版本
agensgraph是兼容PostgreSQL、opencypher的专业图数据库,适合图式关系的管理。
2)gpdb发布5.15
gpdb是兼容PostgreSQL的mpp数据库,适合OLAP场景。近两年,gpdb一直在追赶PostgreSQL的社区版本,预计很快会追上10的PostgreSQL,在TP方面的性能也会得到显著提升。
3)antdb发布3.2
antdb是以Postgres-XC为基础开发的一款PostgreSQL sharding数据库,亚信主导开发,开源,目前主要服务于亚信自有客户。
4)迁移工具MTK发布52版本
MTK是EDB提供的可以将Oracle、PostgreSQL、MySQL、MSSQL、Sybase数据库迁移到PostgreSQL, PPAS的产品,迁移速度可以达到100万行/s以上。
DB2发布 11.1.4.4版本
DB2最新发布Mod Pack 4 and Fix Pack 4,包含以下几方面的改动及增强:
1、性能
2、高可用
3、管理视图
4、应用开发方面
5、联邦功能
6、pureScale
NoSQL家族
Redis发布5.0.3版本
MongoDB升级更新MongoDB Mobile和MongoDB Stitch
2018年11月21日,MongoDB升级更新MongoDB Mobile和MongoDB Stitch,助力开发人员提升工作效率。
MongoDB 公司日前发布了多项新产品功能,旨在更好地帮助开发人员在世界各地管理数据。通过利用存储在移动设备和后台数据库的数据之间的实时、自动的同步特性,MongoDB Mobile通用版本助力开发人员构建更快捷、反应更迅速的应用程序。此前,这只能通过在移动应用内部安装一个可供选择或限定功能的数据库来实现。
MongoDB Mobile在为客户提供随处运行的自由度方面更进了一步。用户在iOS和安卓终端设备上可拥有MongoDB所有功能,将网络边界扩展到其物联网资产范畴。应用系统还可以使用MongoDB Stitch的软件开发包访问移动客户端或后台数据,帮助开发人员通过他们希望的任意方式查询移动终端数据和物联网数据,包括本地读写、本地JSON存储、索引和聚合。通过Stitch移动同步功能(现可提供beta版),用户可以自动对保存在本地的数据以及后台数据库的数据进行同步。
本期新秀:Cassandra发布3.11.3版本
2018年8月11日,Cassandra发布正式版3.11.3。
Apache Cassandra是一款开源分布式NoSQL数据库系统,使用了基于Google BigTable的数据模型,与面向行(row)的传统关系型数据库或键值存储key-value数据库不同,Cassandra使用的是宽列存储模型(Wide Column Stores)。与BigTable和其模仿者HBase不同,数据并不存储在分布式文件系统如GFS或HDFS中,而是直接存于本地。
Cassandra的系统架构与Amazon DynamoDB类似,是基于一致性哈希的完全P2P架构,每行数据通过哈希来决定应该存在哪个或哪些节点中。集群没有master的概念,所有节点都是同样的角色,彻底避免了整个系统的单点问题导致的不稳定性,集群间的状态同步通过Gossip协议来进行P2P的通信。
3.11.3版本的一些bug fix和改进:
NewSQL家族
TiDB 发布2.1.2版本
2018 年 12 月 22 日,TiDB 发布 2.1.2 版,TiDB-Ansible 相应发布 2.1.2 版本。该版本在 2.1.1 版的基础上,对系统兼容性、稳定性做出了改进。
TiDB 是一款定位于在线事务处理/在线分析处理( HTAP: Hybrid Transactional/Analytical Processing)的融合型数据库产品。除了底层的 RocksDB 存储引擎之外,分布式SQL层、分布式KV存储引擎(TiKV)完全自主设计和研发。
TiDB 完全开源,兼容MySQL协议和语法,可以简单理解为一个可以无限水平扩展的MySQL,并且提供分布式事务、跨节点 JOIN、吞吐和存储容量水平扩展、故障自恢复、高可用等优异的特性;对业务没有任何侵入性,简化开发,利于维护和平滑迁移。
TiDB:
PD:
TiKV:
Tools:
1)TiDB-Lightning
2)TiDB-Binlog
EsgynDB发布R2.5版本
2018年12月22日,EsgynDB R2.5版本正式发布。
作为企业级产品,EsgynDB 2.5向前迈进了一大步,它拥有以下功能和改进:
CockroachDB发布2.1版本
2018年10月30日,CockroachDB正式发布2.1版本,其新增特性如下:
新增企业级特性:
新增SQL特性:
新增内核特性:
Admin UI增强:
时间序列
本期新秀:TimescaleDB发布1.0版本
10月底,TimescaleDB 1.0宣布正式推出,官方表示该版本已可用于生产环境,支持完整SQL和扩展。
TimescaleDB是基于PostgreSQL数据库开发的一款时序数据库,以插件化的形式打包提供,随着PostgreSQL的版本升级而升级,不会因为另立分支带来麻烦。
TimescaleDB架构:
数据自动按时间和空间分片(chunk)
更新亮点:
大数据生态圈
Hadoop发布2.9.2版本
2018年11月中旬,Hadoop在2.9分支上发布了新的2.9.2版本,该版本进行了204个大大小小的变更,主要变更如下:
Greenplum 发布5.15版本
Greenplum最新的5.15版本中发布了流式数据加载工具。
该版本中的Greenplum Streem Server组件已经集成了Kafka流式加载功能,并通过了Confluent官方的集成认证,其支持的主要功能如下:
国产数据库概览
K-DB发布数据库一体机版
2018年11月7日,K-DB发布了数据库一体机版。该版本更新情况如下:
OceanBase迁移服务发布1.0版本
1月4日,OceanBase 正式发布OMS迁移服务1.0版本。
以下内容包含 OceanBase 迁移服务的重要特性和功能:
SequoiaDB发布3.0.1新版本
1、架构
1)完整计算存储分离架构,兼容MySQL协议、语法
计算存储分离体系以松耦合的方式将计算与存储层分别部署,通过标准接口或插件对各个模块和组件进行无缝替换,在计算层与存储层均可实现自由的弹性伸缩。
SequoiaDB巨杉数据库“计算-存储分离”架构详细示意
用户可以根据自身业务特征选择面向交易的SQL解析器(例如MySQL或PGSQL)或面向统计分析的执行引擎(例如SparkSQL)。众所周知,使用不同的SQL优化与执行方式,数据库的访问性能可能会存在上千上万倍的差距。计算存储分离的核心思想便是在数据存储层面进行一体化存储,在计算层面则利用每种执行引擎的特点针对不同业务场景进行选择和优化,用户可以在存储层进行逻辑与物理的隔离,将面向高频交易的前端业务与面向高吞吐量的统计分析使用不同的硬件进行存储,确保在多类型数据访问时互不干扰,以真正达到生产环境可用的多租户与HTAP能力。
2、其他更新信息
1)接口变更:
2)主要特性:
云数据库
本期新秀:腾讯发布数据库CynosDB,开启公测
1、News
1)腾讯云数据库MySQL2018年重大更新:
2)腾讯云数据库MongoDB2018年重大更新:
3)腾讯云数据库Redis/CKV+2018年重大更新:
4)腾讯云数据库CTSDB2018年重大更新:
2、Redis 4.0集群版商业化上线
2018年10月,腾讯云数据库Redis 4.0集群版完成邀测、公测、商业化三个迭代,在广州、上海、北京正式全量商业化上线。
产品特性:
使用场景:
官网文档:
3、腾讯自研数据库CynosDB发布,开启公测
2018年11月22日,腾讯云召开新一代自研数据库CynosDB发布会,业界第一款全面兼容市面上两大最主流的开源数据库MySQL和PostgreSQL的高性能企业级分布式云数据库。
本期新秀:京东云DRDS发布1.0版本
12月24日,京东云分布式关系型数据库DRDS正式发布1.0版本。
DRDS是京东云精心自研的数据库中间件产品,获得了2018年 ”可信云技术创新奖”。DRDS可实现海量数据下的自动分库分表,具有高性能,分布式,弹性升级,兼容MySQL等优点,适用于高并发、大规模数据的在线交易, 历史 数据查询,自动数据分片等业务场景,历经多次618,双十一的考验,已经在京东集团内大规模使用。
京东云DRDS产品有以下主要特性
1)自动分库分表
通过简单的定义即可自动实现分库分表,将数据实际存放在多个MySQL实例的数据库中,但呈现给应用程序的依旧是一张表,对业务透明,应用程序几乎无需改动,实现了对数据库存储和处理能力的水平扩展。
2)分布式架构
基于分布式架构的集群方案,多个对等节点同时对外提供服务,不但可有效规避服务的单点故障,而且更加容易扩展。
3)超强性能
具有极高的处理能力,双节点即可支持数万QPS,满足用户超大规模处理能力的需求。
4)兼容MySQL
兼容绝大部分MySQL语法,包括MySQL语法、数据类型、索引、常用函数、排序、关联等DDL,DML语句,使用成本低。
参考链接:
RadonDB发布1.0.3版本
2018年12月26日,MyNewSQL领域的RadonDB云数据库发布1.0.3版本。
推出dbaplus Newsletter的想法
dbaplus Newsletter旨在向广大技术爱好者提供数据库行业的最新技术发展趋势,为社区的技术发展提供一个统一的发声平台。为此,我们策划了RDBMS、NoSQL、NewSQL、时间序列、大数据生态圈、国产数据库、云数据库等几个版块。
我们不以商业宣传为目的,不接受任何商业广告宣传,严格审查信息源的可信度和准确性,力争为大家提供一个纯净的技术学习环境,欢迎大家监督指正。
至于Newsletter发布的周期,目前计划是每三个月左右会做一次跟进, 下期计划时间是2019年4月14日~4月25日, 如果有相关的信息提供请发送至邮箱:newsletter@dbaplus.cn
感谢名单
最后要感谢那些提供宝贵信息和建议的专家朋友,排名不分先后。
往期回顾:
↓↓别忘了点这里下载 2019年1月 完整版Newsletter 哦~
发表评论
暂时没有评论,来抢沙发吧~