点云数据库(云数据库的概念)
本文目录一览:
- 1、百度云数据库如何连接
- 2、怎么查看pcl点云库是否安装好linux
- 3、点云概念与点云处理
- 4、云数据库怎么用
- 5、云数据库和云存储有什么区别呢?
- 6、数据库有哪几种
百度云数据库如何连接
百度云数据库如何连接
百度云数据库为开发者提供了分布式的关系型数据库存储服务。后端采用的是业界最为广泛使用的数据库之一:mysql,并且在前端提供与mysql完全一致的使用方式,使开发者进行应用迁移的代价几乎为零;同时,百度云数据库可以支持百万级别的后端数据库集群,并且多机房自动冗余备份,自动读写分离,开发者不需要关注后端机器及数据库的稳定性、网络问题、机房灾难、单库压力等各种风险,像连接本地mysql一样使用sql服务即可。百度云数据库还为开发者提供数据隔离,不同开发者的数据会存在于不同的数据库中而不会相互影响;为开发者提供安全性检查,对于恶意攻击性访问及时发现并拒绝,避免影响正常访问app的用户,为开发者节省访问带宽。
使用方式
一、创建
(1)登陆yun.baidu.com
(2)点击“云数据库”进入数据库主界面
(3)点击“创建数据库”即可获取一个数据库
二、使用
通过平台phpmyadmin使用
直接点击数据库后面的 “phpmyadmin”即可进入phpmyadmin管理界面。
使用方法可以参考phpmyadmin官网介绍
在云环境应用中使用
php应用
(1)要在应用中使用数据库,必须先创建密钥对
(2)记录需要使用的数据库名称
这里选取WBxduSiUccUSWSwuySym
(3)至此,就可以在PHP应用里使用数据库了,使用方法与使用mysql基本一致,唯一不同的是,在连接到数据库后,需要立即执行select_db操作选中需要使用的数据库;
(注:无法在一次连接中切换数据库,比如上面的WBxduSiUccUSWSwuySym,JqEoAMROhmgQiiZVaPRx;将我们连接到WBxduSiUccUSWSwuySym时,无法通过select_db或发送Use命令切换到JqEoAMROhmgQiiZVaPRx)。
怎么查看pcl点云库是否安装好linux
命令行: net start PCL 如果能启动,那说明安装成功了。 如果想查询默认的数据库,你可以用PCLfont,或者直接命令行操作 进入安装目录下的bin文件夹,或者配置好环境变量,然后 PCL -uroot -p
点云概念与点云处理
点云概念
点云与三维图像的关系 :三维图像是一种特殊的信息表达形式,其特征是表达的空间中三个维度的数据,表现形式包括:深度图(以灰度表达物体与相机的距离),几何模型(由CAD软件建立),点云模型(所有逆向工程设备都将物体采样成点云)。和二维图像相比,三维图像借助第三个维度的信息,可以实现天然的物体——背景解耦。点云数据是最为常见也是最基础的三维模型。点云模型往往由测量直接得到,每个点对应一个测量点,未经过其他处理手段,故包含了最大的信息量。这些信息隐藏在点云中需要以其他提取手段将其萃取出来,提取点云中信息的过程则为三维图像处理。
点云的概念 :点云是在同一空间参考系下表达目标空间分布和目标表面特性的海量点集合,在获取物体表面每个采样点的空间坐标后,得到的是点的集合,称之为“点云”(Point Cloud)。
点云的获取设备 :RGBD设备是获取点云的设备,比如PrimeSense公司的PrimeSensor、微软的Kinect、华硕的XTionPRO。
点云的内容 :根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity),强度信息与目标的表面材质、粗糙度、入射角方向,以及仪器的发射能量,激光波长有关。
根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。
结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。
点云的属性 :空间分辨率、点位精度、表面法向量等。
点云存储格式 :*.pts; *.asc ; *.dat; .stl ; [1] .imw;.xyz; .las。LAS格式文件已成为LiDAR数据的工业标准格式,LAS文件按每条扫描线排列方式存放数据,包括激光点的三维坐标、多次回波信息、强度信息、扫描角度、分类信息、飞行航带信息、飞行姿态信息、项目信息、GPS信息、数据点颜色信息等。
C–class(所属类)
F一flight(航线号)
T一time(GPS时间)
I一intensity(回波强度)
R一return(第几次回波)
N一number of return(回波次数)
A一scan angle(扫描角)
RGB一red green blue(RGB颜色值)
点云的数据类型 :
(1)pcl::PointCloudpcl::PointXYZ
PointXYZ 成员:float x,y,z;表示了xyz3D信息,可以通过points[i].data[0]或points[i].x访问点X的坐标值
(2)pcl::PointCloudpcl::PointXYZI
PointXYZI成员:float x, y, z, intensity; 表示XYZ信息加上强度信息的类型。
(3)pcl::PointCloudpcl::PointXYZRGB
PointXYZRGB 成员:float x,y,z,rgb; 表示XYZ信息加上RGB信息,RGB存储为一个float。
(4)pcl::PointCloudpcl::PointXYZRGBA
PointXYZRGBA 成员:float x , y, z; uint32_t rgba; 表示XYZ信息加上RGBA信息,RGBA用32bit的int型存储的。
(5) PointXY 成员:float x,y;简单的二维x-y点结构
(6)Normal结构体:表示给定点所在样本曲面上的法线方向,以及对应曲率的测量值,用第四个元素来占位,兼容SSE和高效计算。
点云的处理
点云处理的三个层次 :Marr将图像处理分为三个层次,低层次包括图像强化,滤波,关键点/边缘检测等基本操作。中层次包括连通域标记(label),图像分割等操作。高层次包括物体识别,场景分析等操作。工程中的任务往往需要用到多个层次的图像处理手段。
PCL官网对点云处理方法给出了较为明晰的层次划分,如图所示。
此处的common指的是点云数据的类型,包括XYZ,XYZC,XYZN,XYZG等很多类型点云,归根结底,最重要的信息还是包含在pointpcl::point::xyz中。可以看出,低层次的点云处理主要包括滤波(filters),关键点(keypoints)/边缘检测。点云的中层次处理则是特征描述(feature),分割(segmention)与分类。高层次处理包括配准(registration),识别(recognition)。可见,点云在分割的难易程度上比图像处理更有优势,准确的分割也为识别打好了基础。
低层次处理方法:
①滤波方法:双边滤波、高斯滤波、条件滤波、直通滤波、随机采样一致性滤波。②关键点:ISS3D、Harris3D、NARF,SIFT3D
中层次处理方法:
①特征描述:法线和曲率的计算、特征值分析、SHOT、PFH、FPFH、3D Shape Context、Spin Image
②分割与分类:
分割:区域生长、Ransac线面提取、全局优化平面提取
K-Means、Normalize Cut(Context based)
3D Hough Transform(线、面提取)、连通分析
分类:基于点的分类,基于分割的分类,基于深度学习的分类(PointNet,OctNet)
高层次处理方法:
①配准:点云配准分为粗配准(Coarse Registration)和精配准(Fine Registration)两个阶段。
精配准的目的是在粗配准的基础上让点云之间的空间位置差别最小化。应用最为广泛的精配准算法应该是ICP以及ICP的各种变种(稳健ICP、point to plane ICP、Point to line ICP、MBICP、GICP、NICP)。
粗配准是指在点云相对位姿完全未知的情况下对点云进行配准,可以为精配准提供良好的初始值。当前较为普遍的点云自动粗配准算法包括基于穷举搜索的配准算法和基于特征匹配的配准算法。
基于穷举搜索的配准算法:遍历整个变换空间以选取使误差函数最小化的变换关系或者列举出使最多点对满足的变换关系。如RANSAC配准算法、四点一致集配准算法(4-Point Congruent Set, 4PCS)、Super4PCS算法等……
基于特征匹配的配准算法:通过被测物体本身所具备的形态特性构建点云间的匹配对应,然后采用相关算法对变换关系进行估计。如基于点FPFH特征的SAC-IA、FGR等算法、基于点SHOT特征的AO算法以及基于线特征的ICL等…
②SLAM图优化
Ceres(Google的最小二乘优化库,很强大), g2o、LUM、ELCH、Toro、SPA
SLAM方法:ICP、MBICP、IDC、likehood Field、NDT
③三维重建
泊松重建、 Delaunay triangulations、表面重建,人体重建,建筑物重建,树木重建。结构化重建:不是简单的构建一个Mesh网格,而是为场景进行分割,为场景结构赋予语义信息。场景结构有层次之分,在几何层次就是点线面。实时重建:重建植被或者农作物的4D(3D+时间)生长态势;人体姿势识别;表情识别;
④点云数据管理:点云压缩,点云索引(KD、Octree),点云LOD(金字塔),海量点云的渲染
云数据库怎么用
1、点击数据库管理会进入数据库管理页面。
2、点击新建数据库 开始创建数据库,填写数据库名称、帐号名称、密码和备注。
3、点击确认新建,创建成功后会在数据库管理中看到新创建的数据库。
4、点击帐号管理,进入帐号管理页面。
5、若有需要重置密码,可以点击重置密码来重新设置数据库密码。
6、数据导入:采用phpMyAdmin导入数据库。
7、数据导出:phpMyAdmin导出数据。
云数据库和云存储有什么区别呢?
云数据库和云存储的区别:
一、从服务层面来说
这两者都可以做为PaaS服务暴露给用户,云数据库可以包括关系型数据库以及非关系型数据库等,而云存储则可以包含块存储(Block Storage)以及对象存储(Object Storage)等。
二、从数据的结构来说
一般云存储上存储的都是用户上传的比较零散的文件,每个文件的类型和组织的方式可以不一致,比如图片,音频,word文件之类的,而数据库中存储中的数据都由数据库进程来直接管理,包括表空间,表结构以及数据存储的方式,是有规则的。
三、从提供的服务来说
云存储:提供存储能力,更多面对的场景是非结构化类数据,如文件,图片,视频等。
云数据库:提供基础的数据库和数据对象管理能力,既包括oracle,mysql,sql server等关系型数据库,也可以包括类似mongodb , hbase等半结构化数据库。
四、从两者的关系来说
对于云存储当前基本都基于类似hdfs分布式文件系统进行封装,提供存储服务能力接口。也可以基于hdfs,上面再架构一层,形成一个数据库,再将数据库能力暴露出去,形成云数据库。
类似hbase,但是对于常见的关系型数据库,可以做为云数据库,但是他们底层不不是依赖的云存储能力。
扩展资料:
云存储的主要用途:
云存储通常意味着把主数据或备份数据放到企业外部不确定的存储池里,而不是放到本地数据中心或专用远程站点。支持者们认为,如果使用云存储服务,企业机构就能节省投资费用,简化复杂的设置和管理任务,把数据放在云中还便于从更多的地方访问数据。
数据备份、归档和灾难恢复是云存储可能的三个用途。
减少工作和费用是预计云服务在接下来几年会持续增长的一个主要原因。据研究公司IDC声称,全球IT开支当中有4%用于云服务;到2012年,这个比例会达到9%。
由于成本和空间方面的压力,数据存储非常适合使用云解决方案;IDC预测,在这同一期间,云存储在云服务开支中的比重会从8%增加到13%。
参考资料来源:百度百科-云存储
百度百科-云数据库
数据库有哪几种
常用数据库有:
1、关系型数据库
关系型数据库是由IBM的E.F. Codd于1970年发明的,它是一个表格数据库,其中定义了数据,因此可以以多种不同的方式对其进行重组和访问。关系数据库由一组表组成,其中的数据属于预定义的类别。每个表在一个列中至少有一个数据类别,并且每一行对于列中定义的类别都有一个特定的数据实例。
2、分布式数据库
分布式数据库是一种数据库,数据库存储在多个物理位置,处理在网络中的不同点之间分散或复制。分布式数据库可以是同构的,也可以是异构的。同构分布式数据库系统中的所有物理位置都具有相同的底层硬件,并运行相同的操作系统和数据库应用程序。异构分布式数据库中的硬件、操作系统或数据库应用程序在每个位置上可能是不同的。
3、云数据库
云数据库是针对虚拟化环境优化或构建的数据库。云数据库提供了一些好处,比如可以按每次使用支付存储容量和带宽的费用,还可以根据需要提供可伸缩性和高可用性。云数据库还为企业提供了在软件即服务部署中支持业务应用程序的机会。
4、NoSQL数据库
NoSQL数据库对于大型分布式数据集非常有用。NoSQL数据库对于关系数据库无法解决的大数据性能问题非常有效。当组织必须分析大量非结构化数据或存储在云中多个虚拟服务器上的数据时,它们是最有效的。
5、面向对象的数据库
使用面向对象编程语言创建的项通常存储在关系数据库中,但是面向对象数据库非常适合于这些项。面向对象的数据库是围绕对象(而不是操作)和数据(而不是逻辑)组织的。例如,关系数据库中的多媒体记录可以是可定义的数据对象,而不是字母数字值。
6、图形数据库
面向图形的数据库是一种NoSQL数据库,它使用图形理论存储、映射和查询关系。图数据库基本上是节点和边的集合,其中每个节点表示一个实体,每个边表示节点之间的连接。
发表评论
暂时没有评论,来抢沙发吧~