阿里云服务器hadoop(阿里云服务器一年价格)
本文目录一览:
- 1、hadoop3.0新特性
- 2、阿里云主要提供什么服务?
- 3、hadoop集群搭建在阿里云服务器上 云服务器配置要求是多少
- 4、阿里云服务器版本不一致有什么方法可以解决此问题,版本不一致配置Hadoop集群出现问题怎么解决?
- 5、如何安装 hadoop 阿里云
hadoop3.0新特性
下图简单看一下hadoop的发展史
思想: 通过引用数据校验块,使其和原始数据校验块编码产生关联关系,然后听过关联关系恢复,这个技术依赖于线性代数一些姿势.
用处: 用于数据的恢复,可以提高磁盘的利用率
缺点: 时间换空间产物,因为编码解码会浪费时间
纠删码技术原理解释:
假设
x1=1;
x2=2;
x3=3
x1+2 x2+4 x3=17
x1+2 x2+3 x3=14
根据上面一组方程求x1,x2,x3的值迟冲,其实虽然有5个方程,其实最少只需要有三个方程就能求出来另外两个方程
把上面这个原理对应到数据里面就是
x1,x2,x3就相当于是原始数据,
x1+2 x2+4 x3=17
x1+2 x2+3 x3=14
这两个方程结果为校验值,
就是假如只有x1这个数据块,但是有下面连个方程,是不是就可以求出对应的x2,和x3了,
如果一个数据是被是3个原始的数据块:
备份机制中:采用2复本机制,至少需要6个数据块才能够保证数据的可靠性,即每个各备份一个即可,
如果是数据块的这种,最少需要4个,他可以码念歼容许你的一个数据块的丢失,比如把1丢了,剩下的2和3剩下,通过一个方程就能求出来1的内容,就可以允许一个数据块丢失
之前数据丢失了,直接从别的服务器位置拷贝一个过来就行,hadoop3用纠删码就需要号计算,还需要拿到另外块的数据和计算公式,因为他是要计算的,比如1,2,3三块数据块,比如采用纠删码存储技术,就可以把1号数据丢失,但是某天需要用到1号,数据,就需要从新计算恢复,所以这个就需要耗费时间.
但是我觉得吧,比如hadoop以后可以在这个基础上优化一下
比如说三台服务器,一个文件被切割成了1,2,3三份,具体存储如下
上面三个为纠删码存储方式
下面三个为正常存储方式
hadoop正在往这个方向优化
即先从其他服务器找这个数据块,找不到再用纠删码计算
所以纠删码用于存储冷数据,冷数据指的是平时很少用到的数据
这个用法创建一个eraszing zone(空间),然后放在这个空间的数据,创建目录,把需要纠删码技术存储的把这个文件放到这个路径即可
比如之前的数据时热门的,但是之前并不是存储在这个eraszing zone里面,但是现在就是冷数据,食之无味,弃之高渗可惜,鸡肋也,所以就可以在这个数据拷贝到这个eraszing zone里面,然后把那旧数据原位置删除就行,hadoop也在做一种简单的办法,通过一个命令,修改这个冷数据的存储方式,hadoop正在做,
所以3.0的冷数据还是建议使用这种备份机制,冷门数据是用纠删码(时间换空间)
namenode的HA升级了,支持两个以上的namemode,
例如,通过配置三个NameNode和五个JournalNode,群集能够容忍两个节点的故障,而不是一个故障。
但是Active的NameNode始终只有1个,余下的都是Standby。 Standby NN会不断与JN同步,保证自己获取最新的editlog,并将edits同步到自己维护的image中去,这样便可以实现热备,在发生failover的时候,立马切换成active状态,对外提供服务。同时,JN只允许一个active状态的NN写入
以前是支持亚马逊的,现在3.0支持了更多的,尤其是阿里云,说明阿里云正在走向壮大
增加DataNode的 内部 负载均衡,之前是DataNode之间的负载均衡,现在是DataNode内部的负载均衡,比如DataNode这台机器有三块磁盘,然后发现只有一块磁盘写满了,另外两块磁盘都没怎么用,这时候输入一个命令,他就可以帮你重新分配一下
现在可以通过hdfs diskbalancer命令,进行节点内部硬盘间的数据平衡。该功能默认是关闭的,需要手动设置参数dfs.disk.balancer.enabled为true来开启。
yarn timeline service做了升级,yarn timeline service是yarn是资源管理和任务调度,这timeline service就是监控这个任务的,什么时候启动的,用到了哪些资源,可以用时间序列这个结构来存储这个结构,hadoop的2.5之前,通过jobhistory server来提供任务监控信息的收集,但是他有缺点,底层扩展性和可靠性不高,因为做这个数据量也挺大的,所以在3.0作了相应的修改.
支持opportunistic(机会主义的) containers(容器)和distributed(分布式) scheduling(调度)
在hadoop上面的跑的任务,对资源都是争抢的状态,但是有时候需要协调人物的优先级,在hadoop3.0跑的时候,比如MapReduce任务,hive任务过来,对底层资源都是争抢状态,所以就需要协调人物的优先级,hadoop3.0的yarn就是比较灵活,比如任务在跑的时候,指定了优先级也好,指定了比如2核,8G的固定资源也好,有时候某个时间点根本用不到这么多资源,那个时间段可能只用了一半,释放了一半,这个opportunistic(机会主义的) containers(容器)就可以让不这么重要的任务临时用一下这个临时的资源
yarn配置资源可以配置的更加细化,比如原先是只支持线级别,现在支持点级别
比如这个hive依赖hadoopclient,但是还依赖某一个jar包的1.0版本,但是呢,这个hadoopclient依赖这个jar包的2.0版本,然后这两个jar包放到一起,肯定报错,因为名字一样,版本不一样,使用就会紊乱
优化,将这个hadoop client的jar包放到另外一个空间,隔离起来,这样就不会乱了
以上内容纯手敲,如有疑问或者错误请留言或者私信
以上内容纯手敲,如有疑问或者错误请留言或者私信
以上内容纯手敲,如有疑问或者错误请留言或者私信
阿里云主要提供什么服务?
阿里云致力于以在线公共服务的方式,提供安全、可靠的计算和数据处理能力,让计算和人工智能成为普惠科技。
阿里云服务着制造、金融、政务、交通、医疗、电信、能源等众多领域的领军企业,包括中国联通、12306、中石化、中石油、飞利浦、华大基因等大型企业客户,以及微博、知乎、锤子科技等明星互联网公司。在天猫双11全球狂欢节、12306春运购票等极富挑战的应用场景中,阿里云保持着良好的运宽李行纪录。
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。
扩展资料:
阿里云主要产品:
1、弹性计算:
云服务器ECS:可弹性扩展、安全、稳定、易用的计算服务
块存储:可弹性扩展、高性能、高可靠的块级随机存储
专有网络VPC:帮您轻松构建逻辑隔离的专有网络
负载均衡:对多台云服务器进行流量分发的负载均衡服务
弹性伸缩:自动调整弹性计算资源的管理服务
资源编排:批量创建、管理、配置云计算资源
容器服务:应用全差带生命周期管理的Docker服务
高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机
批量计算:简单易用的大规模并行批处理计算服务
E-MapReduce:基于Hadoop/Spark的大数据处理分析服务
2、数据库:
云数据库RDS:完全兼容MySQL,SQLServer,PostgreSQL
云数据库MongoDB版:三节点副本集保证高可用
云数据库Redis版:兼容开源Redis协议的Key-Value类型
云数据库Memcache版:在线缓存服务,为热点数据的访问提供高速响应
PB级云数据库PetaData:支持PB级海量数据存储的分布式关系型数据库
云数据库HybridDB:基于GreenplumDatabase的MPP数据仓库
云数据库OceanBase:金融级高可靠、高性能、分布式自研数据库
数据传输:比GoldenGate更易用,阿里异地多活基础架构
数据管理:比phpMyadmin更强大,比Navicat更易用
3、存储:
对象存储OSS:海量、安全和高可靠的云存储服务
文件存储:无限扩展、多共享、标准文件协议的文件存储服务
归档存储:海量数据的长期归档、备份服务
块存储:可弹性扩展、高性能、高可靠的块级随机存储
表格存储:高并发、低延时、无限容量的Nosql数据存储服务
4、网络:
CDN:跨运营商、跨地域全网覆盖的网络加速服务
专有网络VPC:帮您轻松构建逻辑隔离的专有网络
高速通道:高速稳定的VPC互联和专线接入服务
NAT网关:支持NAT转发、共享带宽的VPC网关
2018年6月20日,阿里云宣布联合三大运营商全面对外提供IPv6服务。
5、大数据:
MaxCompute:原名ODPS,是一种快速、完全托管的TB/PB级数据仓库解决方案。
QuickBI:高效数据分析与展现平台,通虚巧芦过对数据源的连接,和数据集的创建,对数据进行即席的分析与查询。并通过电子表格或仪表板功能,以拖拽的方式进行数据的可视化呈现。
大数据开发套件:提供可视化开发界面、离线任务调度运维、快速数据集成、多人协同工作等功能,拥有强大的OpenAPI为数据应用开发者提供良好的再创作生态
DataV数据可视化:专精于业务数据与地理信息融合的大数据可视化,通过图形界面轻松搭建专业的可视化应用,满足您日常业务监控、调度、会展演示等多场景使用需求
关系网络分析:基于关系网络的大数据可视化分析平台,针对数据情报侦察场景赋能,如打击虚假交易,审理保险骗赔,案件还原研判等
推荐引擎:推荐服务框架,用于实时预测用户对物品偏好,支持A/BTest效果对比
公众趋势分析:利用语义分析、情感算法和机器学习,分析公众对品牌形象、热点事件和公共政策的认知趋势
企业图谱:提供企业多维度信息查询,方便企业构建基于企业画像及企业关系网络的风险控制、市场监测等企业级服务
数据集成:稳定高效、弹性伸缩的数据同步平台,为阿里云各个云产品提供离线(批量)数据进出通道
分析型数据库:在毫秒级针对千亿级数据进行即时的多维分析透视和业务探索
流计算:流式大数据分析平台,提供给用户在云上进行流式数据实时化分析工具
6、人工智能:
机器学习:基于阿里云分布式计算引擎的一款机器学习算法平台,用户通过拖拉拽的方式可视化的操作组件来进行试验,平台提供了丰富的组件,包括数据预处理、特征工程、算法组件、预测与评估
语音识别与合成:基于语音识别、语音合成、自然语言理解等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验
人脸识别:提供图像和视频帧中人脸分析的在线服务,包括人脸检测、人脸特征提取、人脸年龄估计和性别识别、人脸关键点定位等独立服务模块
印刷文字识别:将图片中的文字识别出来,包括身份证文字识别、门店招牌识别、行驶证识别、驾驶证识别、名片识别等证件类文字识别场景
7、云安全:
服务器安全(安骑士):由轻量级Agent和云端组成,集检测、修复、防御为一体,提供网站后门查杀、通用Web软件0day漏洞修复、安全基线巡检、主机访问控制等功能,保障服务器安全
DDoS高防IP:云盾DDoS高防IP是针对互联网服务器(包括非阿里云主机)在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠
Web应用防火墙:网站必备的一款安全防护产品。通过分析网站的访问请求、过滤异常攻击,保护网站业务可用及资产数据安全
加密服务:满足云上数据加密,密钥管理、加解密运算需求的数据安全解决方案
CA证书服务:云上签发Symantec、CFCA、GeoTrustSSL数字证书,部署简单,轻松实现全站HTTPS化,防监听、防劫持,呈现给用户可信的网站访问
数据风控:凝聚阿里多年业务风控经验,专业、实时对抗垃圾注册、刷库撞库、活动作弊、论坛灌水等严重威胁互联网业务安全的风险
绿网:智能识别文本、图片、视频等多媒体的内容违规风险,如涉黄,暴恐,涉政等,省去90%人力成本
安全管家:基于阿里云多年安全实践经验为云上用户提供的全方位安全技术和咨询服务,为云上用户建立和持续优化云安全防御体系,保障用户业务安全
云盾混合云:在用户自有IDC、专有云、公共云、混合云等多种业务环境为用户建设涵盖网络安全、应用安全、主机安全、安全态势感知的全方位互联网安全攻防体系
态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案
先知:全球顶尖白帽子和安全公司帮你找漏洞,最私密的安全众测平台。全面体检,提早发现业务漏洞及风险,按效果付费
移动安全:为移动APP提供安全漏洞、恶意代码、仿冒应用等检测服务,并可对应用进行安全增强,提高反破解和反逆向能力。
8、互联网中间件:
企业级分布式应用服务EDAS:以应用为中心的中间件PaaS平台、
消息队列MQ:ApacheRocketMQ商业版企业级异步通信中间件
分布式关系型数据库服务DRDS:水平拆分/读写分离的在线分布式数据库服务
云服务总线CSB:企业级互联网能力开放平台
业务实施监控服务ARMS:端到端一体化实时监控解决方案产品
9、分析:
E-MapReduce:基于Hadoop/Spark的大数据处理分析服务
云数据库HybirdDB:基于GreenplumDatabase的MPP数据仓库
高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机
大数据计算服务MaxCompute:TB/PB级数据仓库解决方案
分析型数据库:海量数据实时高并发在线分析
开放搜索:结构化数据搜索托管服务
QuickBI:通过对数据源的连接,对数据进行即席分析和可视化呈现。
参考资料:
百度百科-阿里云
hadoop集群搭建在阿里云服务器上 云服务器配置要求是多少
如果是集群的话,我考虑需要流畅运行的话,2核4G配置是可以满足的。因为这个集群形式,用于适用于物联网、车联网、监控、安全风控、即时通讯、消息存储等行业场景,所以数据量是比较大的,所以配置太低了跑不动,会卡死的。
因为hadoop是海量数据的处理能力,所以服务器一定不能太小配置了,跑不动了就没实际用途了。最好使用4核8G内存及以上配置。
因为这方面内容较配饥多,这里也写不开那么多内容,所以你可以留言或到我的博客上搜索相关内容,老魏有写搭和过教程,还不止一篇,都挺详细的内知卖盯容,可以帮助你入门。
阿里云服务器版本不一致有什么方法可以解决此问题,版本不一致配置Hadoop集群出现问题怎么解决?
做毕设需要用到Hadopp数据库,但是考闷漏手虑到给自己的电脑中装n个虚拟机一定会使自己电脑的速度和效率变得很低,所以选择使蚂嫌用阿里云的搜如云服务器来进行项目的开发。
在阿里云官网租用一个服务器(学生服务有优惠:P),创建时公共镜像选择Ubuntu14.04,其他设置不变,创建好了以后需要安装各种相关软件才能搭建Hadoop的环境。
可以使用PuTTY来远程管理我们的云服务器。打开PuTTY后输入云服务器的公网IP,进入管理界面。
如何安装 hadoop 阿里云
按照小鸟云计算官方工程师给出的步骤:
集群安装配置Hadoop
集群节点:node4、node5、node6、node7、node8。
操作系统为:CentOS release 5.5 (Final)
安装步骤
一、创建Hadoop用户组。
二、安装JDK。下载安装滚弊缓jdk。安装目录如下:
三、修改机器名,修改文件/etc/hosts。如下卜旁:
四、安装大模ssh服务。命令:yum install openssh-server。
五、建立ssh无密码登陆。
发表评论
暂时没有评论,来抢沙发吧~