阿里云quickbi(阿里云quickbi教程)
217
2023-05-09
本文目录一览:
在阿里云的大数据体系中,有两个数据展现组件,一个是QuickBI、一个是DataV。
使用QuickBI过程类似于吃炸酱面,技术人员提前帮业务人员准备好数据(第1步、第2步),业务人员把自己需要的数据拖到仪表板或者表格里(第3步或第4步),最后再把仪表板和报表加上菜单就是数据门户(第5步)。
为了让大数据更加普惠,QuickBI和DataV分别找到了两种不同的解决方案:
Quick BI产品架构如下图所示:
Quick BI的主要模块和相关功能。
能够解决:
推荐搭配使用:
RDS + Quick BI
图例:
通过整合散落的各类数据,构建统一的大数据平台系统,实现经营、商品、流量、店铺、订 单、营销等各类场景分析,从各类整体指标概览,再到分层细节指标数据的对比分析,实现 数据指导业务精细化运营。
能够解决:
多渠道数据无法整合分析
多渠道经营、流量、店铺等数据各自为阵,无法整合关联分析。
数据的汇管用无法统一
各业务部分规则不同导致无法实现统一化管控,数据分析过程中效率低下。
业务人员自助分析困难
业务人员分析数据完全依赖IT部门,无法根据需求灵活分析
新的时代需要全方睁清位的去利用大数据提高会员服务的体验,需要对会员的分类、分级、偏好、以及连锁门店的经营状况等数据进行分析,以增加对会员行为预测的更准确的判断。
能够解决
-用户数据提取效率
要从业务上面考虑,如何从会员及其行为数据提取洞见,并给会员提供更好的服务;
-BI系统建设成本
传统BI 和大数据建设的体系成本非常高,速度也很慢;
-业务人员协同
传统连锁的报表分析业务门槛很高,限于连锁模式的特性,很多业务人员分散在全国各地。
下面将以一个真实的数据分析案例为场景带您开启QuickBI产品之旅。
假设您是一家大型互联网新零售企业的数据分析师,您的经理刚刚拿到2019年8月份的月度运营分析数据,他发现近期企业运营状况不佳,8月份毛利额环比前几个月下滑较大,三季度存在达标风险。
因此将这个任务交给了您,根据订单信息和流量渠道信息等相关数据,分析企业8月份毛利额下滑的关键要素,并将其分享给团队,以便指导相关业者裤务部门采取决策和行动,提高企业整体毛利额。
Quick BI快速入门分为以下步骤:
当文件的状态为 同步完成
默认在 Personal Workspace 下,通过上传文件的方式连接数据源成功后,首早简则在 我的数据集 下看到新建的数据集。如果没有,您可以通过以下方式创建数据集。若已有目标数据集,请跳过此步骤。
下面为您介绍查看订单信息明细表的度量和维度信息。
为了分析各个渠道的毛利情况,您需要在 度量 中添加 毛利额 和 毛利率 两个指标,方便后续进行相关数据统计。
为了分析各个渠道的毛利情况,您需要将订单信息明细表和渠道信息维度表进行通过 渠道ID 字段进行关联,以获取对应的渠道名称和渠道类别,方便后续进行相关数据统计。
通过以下步骤,分析毛利额异常下滑的原因。
进入仪表板编辑页面。
为了分析毛利额下滑原因,您需要先查看月度毛利额的走势,确认毛利额在哪个月份出现下滑。同时需要分析销售额的月度走势,确认近几个月的销售情况。本文以线图来展示月度毛利额和月度销售额的走势图。
查看月度毛利额统计
您可以通过线图查看毛利额的月度走势数据。
此时,您可以看到2019年8月份的毛利额从7月份的66.54万下降到了58.46万。
查看销售额统计
为了进一步排查毛利额的下降原因,您可以通过线图查看销售额的月度走势数据。
本文介绍阿里云的QuickBI工具可以产生的各种图表类型,以便了解其产品最终呈现功能。
漏斗图样式:
漏斗图配置:
样式:
配置:
参考例子,可以从西南区域到广西省份到广西各个城市的饼状图;
LBS飞线地图以一个地图轮廓为背景,用动态的飞线反映两地或者多地之间的数据关系。
LBS飞线地图是由两个地理区域和LBS飞线度量构成的。地理区域由数据的维度决定,如省份或者城市;LBS飞线度量的大小由数据的度量决定,如运输成本、订单数量等。
矩阵树图用来描述考察对象之间数据指标的相对占比关系。
矩阵树图是由色块标签和色块大小组成的。色块标签由数据的维度决定,如产品包箱;色块大小由数据的度量决定,如运输成本。
树图是通过树形结构来展现层级数据的组织关系,以父子层次结构来组织对象,是枚举法的一种表达方式,例如查看某兆段个省份下各地级市的收入状况,那么省份与地级市之间的关系就可以看做是父子层次结构。树图适用于与组织结构有关的分析,如公司的人员组织结构,或者医院的科室组织结构。
树图是由树父子节点标签和树父子节点指标构成的。每个树父子节点标签由数据的维度决定,如区域,产品类型等;每个树父子节点指标由数据的度量决定,如订单数量,订单金额等。
词云图可以很直观的显示词频。适用于做一些用户的画像和用户的标签。
词云图是由词标签和词大小构成的。每个词标签由数据的维度决定,如客户名称,产品名称等;每个词大小由数据的度量决定,如利润金额,单价等。
来源去向图通过划分来源、中间和去向页面的统计数据,展示页面流转的流量数据。
来源去向图目前仅支持三级的维度,这三级维度是由中心节点、节点类型、节点名称构成;图表的度量是由节点指标构成。族清誉
用来展示核心KPI数据的结果,并支持自定义背景颜色等样式设置。
指标拆解树的使用场景很多,例如渠道分析、贡献分析。通过分解核心指标,来找到影响指标的关键渠道或关键成员。
指标拆解树是由分析和拆解依据组成的。拆解依据由数据的维度决定,例如区域、 省份、城市、产品名称等;分析由数据的度量决定,例如销售额、订单数量等。
(2)Quick BI行业标杆客户实战应用场正返景和DEMO
quickbi支持的表连接方式有左外连接(LEFTJOIN)、内连闷肢迅接(INNERJOIN)、全连接(FULLJOIN)。QuickBI是阿里云旗下产品,大蚂此数据的高效分析与展现平台。通过对数据源的连接,和数据集的创建,可对数据进行即时分析与查饥谈询。并通过电子表格或仪表板功能,以拖拽的方式进行数据的可视化呈现。
发表评论
暂时没有评论,来抢沙发吧~