阿里云大数据仓库(阿里云大数据服务)

admin 105 2023-05-12

阿里云服务器优惠多,折扣错,惊喜多,请咨询:www.wqiis.com

本文目录一览:

阿里云的主要功能是什么?

阿里云致力于以在线公共服务的方式,提供安全、可靠的计算和数据处理能力,让计算和人工智能成为普惠科技。

阿里云服务着制造、金融、政务、交通、医疗、电信、能源等众多领域的领军企业,包括中国联通、12306、中石化、中石油、飞利浦、华大基因等大型企业客户,以及微博、知乎、锤子科技等明星互联网公司。在天猫双11全球狂欢节、12306春运购票等极富挑战的应用场景中,阿里云保持着良好的运宽李行纪录。

阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。

扩展资料:

阿里云主要产品:

1、弹性计算:

云服务器ECS:可弹性扩展、安全、稳定、易用的计算服务

块存储:可弹性扩展、高性能、高可靠的块级随机存储

专有网络VPC:帮您轻松构建逻辑隔离的专有网络

负载均衡:对多台云服务器进行流量分发的负载均衡服务

弹性伸缩:自动调整弹性计算资源的管理服务

资源编排:批量创建、管理、配置云计算资源

容器服务:应用全差带生命周期管理的Docker服务

高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机

批量计算:简单易用的大规模并行批处理计算服务

E-MapReduce:基于Hadoop/Spark的大数据处理分析服务

2、数据库

云数据库RDS:完全兼容MySQL,SQLServer,PostgreSQL

云数据库MongoDB版:三节点副本集保证高可用

云数据库Redis版:兼容开源Redis协议的Key-Value类型

云数据库Memcache版:在线缓存服务,为热点数据的访问提供高速响应

PB级云数据库PetaData:支持PB级海量数据存储的分布式关系型数据库

云数据库HybridDB:基于GreenplumDatabase的MPP数据仓库

云数据库OceanBase:金融级高可靠、高性能、分布式自研数据库

数据传输:比GoldenGate更易用,阿里异地多活基础架构

数据管理:比phpMyadmin更强大,比Navicat更易用

3、存储:

对象存储OSS:海量、安全和高可靠的云存储服务

文件存储:无限扩展、多共享、标准文件协议的文件存储服务

归档存储:海量数据的长期归档、备份服务

块存储:可弹性扩展、高性能、高可靠的块级随机存储

表格存储:高并发、低延时、无限容量的Nosql数据存储服务

4、网络:

CDN:跨运营商、跨地域全网覆盖的网络加速服务

专有网络VPC:帮您轻松构建逻辑隔离的专有网络

高速通道:高速稳定的VPC互联和专线接入服务

NAT网关:支持NAT转发、共享带宽的VPC网关

2018年6月20日,阿里云宣布联合三大运营商全面对外提供IPv6服务。

5、大数据:

MaxCompute:原名ODPS,是一种快速、完全托管的TB/PB级数据仓库解决方案。

QuickBI:高效数据分析与展现平台,通虚巧芦过对数据源的连接,和数据集的创建,对数据进行即席的分析与查询。并通过电子表格或仪表板功能,以拖拽的方式进行数据的可视化呈现。

大数据开发套件:提供可视化开发界面、离线任务调度运维、快速数据集成、多人协同工作等功能,拥有强大的OpenAPI为数据应用开发者提供良好的再创作生态

DataV数据可视化:专精于业务数据与地理信息融合的大数据可视化,通过图形界面轻松搭建专业的可视化应用,满足您日常业务监控、调度、会展演示等多场景使用需求

关系网络分析:基于关系网络的大数据可视化分析平台,针对数据情报侦察场景赋能,如打击虚假交易,审理保险骗赔,案件还原研判等

推荐引擎:推荐服务框架,用于实时预测用户对物品偏好,支持A/BTest效果对比

公众趋势分析:利用语义分析、情感算法和机器学习,分析公众对品牌形象、热点事件和公共政策的认知趋势

企业图谱:提供企业多维度信息查询,方便企业构建基于企业画像及企业关系网络的风险控制、市场监测等企业级服务

数据集成:稳定高效、弹性伸缩的数据同步平台,为阿里云各个云产品提供离线(批量)数据进出通道

分析型数据库:在毫秒级针对千亿级数据进行即时的多维分析透视和业务探索

流计算:流式大数据分析平台,提供给用户在云上进行流式数据实时化分析工具

6、人工智能:

机器学习:基于阿里云分布式计算引擎的一款机器学习算法平台,用户通过拖拉拽的方式可视化的操作组件来进行试验,平台提供了丰富的组件,包括数据预处理、特征工程、算法组件、预测与评估

语音识别与合成:基于语音识别、语音合成、自然语言理解等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验

人脸识别:提供图像和视频帧中人脸分析的在线服务,包括人脸检测、人脸特征提取、人脸年龄估计和性别识别、人脸关键点定位等独立服务模块

印刷文字识别:将图片中的文字识别出来,包括身份证文字识别、门店招牌识别、行驶证识别、驾驶证识别、名片识别等证件类文字识别场景

7、云安全:

服务器安全(安骑士):由轻量级Agent和云端组成,集检测、修复、防御为一体,提供网站后门查杀、通用Web软件0day漏洞修复、安全基线巡检、主机访问控制等功能,保障服务器安全

DDoS高防IP:云盾DDoS高防IP是针对互联网服务器(包括非阿里云主机)在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠

Web应用防火墙:网站必备的一款安全防护产品。通过分析网站的访问请求、过滤异常攻击,保护网站业务可用及资产数据安全

加密服务:满足云上数据加密,密钥管理、加解密运算需求的数据安全解决方案

CA证书服务:云上签发Symantec、CFCA、GeoTrustSSL数字证书,部署简单,轻松实现全站HTTPS化,防监听、防劫持,呈现给用户可信的网站访问

数据风控:凝聚阿里多年业务风控经验,专业、实时对抗垃圾注册、刷库撞库、活动作弊、论坛灌水等严重威胁互联网业务安全的风险

绿网:智能识别文本、图片、视频等多媒体的内容违规风险,如涉黄,暴恐,涉政等,省去90%人力成本

安全管家:基于阿里云多年安全实践经验为云上用户提供的全方位安全技术和咨询服务,为云上用户建立和持续优化云安全防御体系,保障用户业务安全

云盾混合云:在用户自有IDC、专有云、公共云、混合云等多种业务环境为用户建设涵盖网络安全、应用安全、主机安全、安全态势感知的全方位互联网安全攻防体系

态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案

先知:全球顶尖白帽子和安全公司帮你找漏洞,最私密的安全众测平台。全面体检,提早发现业务漏洞及风险,按效果付费

移动安全:为移动APP提供安全漏洞、恶意代码、仿冒应用等检测服务,并可对应用进行安全增强,提高反破解和反逆向能力。

8、互联网中间件:

企业级分布式应用服务EDAS:以应用为中心的中间件PaaS平台、

消息队列MQ:ApacheRocketMQ商业版企业级异步通信中间件

分布式关系型数据库服务DRDS:水平拆分/读写分离的在线分布式数据库服务

云服务总线CSB:企业级互联网能力开放平台

业务实施监控服务ARMS:端到端一体化实时监控解决方案产品

9、分析:

E-MapReduce:基于Hadoop/Spark的大数据处理分析服务

云数据库HybirdDB:基于GreenplumDatabase的MPP数据仓库

高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机

大数据计算服务MaxCompute:TB/PB级数据仓库解决方案

分析型数据库:海量数据实时高并发在线分析

开放搜索:结构化数据搜索托管服务

QuickBI:通过对数据源的连接,对数据进行即席分析和可视化呈现。

参考资料:

百度百科-阿里云

阿里云的主要产品

阿里云的产品致力于提升运维效率,降低IT成本,令使用者更专注于核心业务发展。

云服务器ECS

一种简单高效,处理能力可弹性伸缩的计算服务。助您快速构建更稳定、安全的应用。提升运维效率,降低IT成本,使您更专注于核心业务创新。

云引擎ACE

一种弹性、分布式的应用托管环境,支持Java、PHP、Python、Node.js等多种语言环境。帮助开发者快速开发和部署服务端应用程序,并简化系统维护工作。搭载了丰富的分布式扩展服务,为应用程序提供强大助力。

弹性伸缩

根据用户的业务需求和策略,自动调整其弹性计算资源的管理服务。其能够在业务增长时自动增加ECS实例,并在业务下降时自动减少ECS实例。 

一种即开即用、稳定可靠、可弹性伸缩的在线数据库服务。基于飞天分布式系统和高性能存储,RDS支持MySQL、SQL Server、PostgreSQL和PPAS(高度兼容Oracle)引擎,并且提供了容灾、备份、恢复、监控、迁移等方面的全套解决方案。

开放结构化数据服务OTS

构建在阿里云飞天分布式系统之上的 NoSQL数据库服务,提供海量结构化数据的存储和实时访问。OTS 以实例和表的形式组织数据,通过数据分片和负载均衡技术,实现规模上的无缝扩展。应用通过调用 OTS API / SDK 或者操作管理控制台来使用 OTS 服务。

开放缓存服务OCS

在线缓存服务,为热点数据的访问提供高速响应。

键值存储KVStore for Redis

兼容开源Redis协议的Key-Value类型在线存储服务。KVStore支持字符串、链表、集合、有序集合、哈希表等多种数据类型,及事务(Transactions)、消息订阅与发布(Pub/Sub)等高级功能。通过内存+硬盘的存储方式,KVStore在提供高速数据读写能力的同时满足数据持久化需求。

数据传输

支持以数据库为核心的结构化存储产品之间的数据传输。 它是一种集数据迁移、数据订阅及数据实时同步于一体的数据传输服务。 数据传输的底层数据流基础设施为阿里双11异地双活基础架构, 为数千下游应用提供实时数据流,已在线上稳定运行3年之久。

对象存储OSS

阿里云对外提供的海量、安全和高可靠的云存储服务。RESTFul API的平台无关性,容量和处理能力的弹性扩展,按实际容量付费真正使您专注于核心业务。

归档存储

作为阿里云数据存储产品体系的重要组成部分,致力于提供低成本、高可靠的数据归档服并族务,适合于海量数据的长期归档、备份。

消息服务

一种高效、可靠、安全、便捷、可弹性扩展的分布式消息与通知服务。消息服务能够帮助应用开发者在他们应用的分布式组件上自由的传递数据,构建松耦合系统。

CDN

内容分发网络将源站内容分发至全国所有的节点,缩短用户查看对象的延迟,提高用户访问网站的备瞎响应速度与网站的可用性,解决网络带宽小、用户访问量大、网点分布不均等问题。 负载均衡

对多台云服务器进行流量分发的负载均衡服务。负载均衡可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。

专有网络VPC

帮助基于阿里云构建出一个隔绝滚弊离的网络环境。可以完全掌控自己的虚拟网络,包括选择自有 IP 地址范围、划分网段、配置路由表和网关等。也可以通过专线/VPN等连接方式将VPC与传统数据中心组成一个按需定制的网络环境,实现应用的平滑迁移上云。

开放数据处理服务ODPS

由阿里云自主研发,提供针对TB/PB级数据、实时性要求不高的分布式处理能力,应用于数据分析、挖掘、商业智能等领域。阿里巴巴的离线数据业务都运行在ODPS上。

采云间DPC

基于开放数据处理服务(ODPS)的DW/BI的工具解决方案。DPC提供全链路的易于上手的数据处理工具,包括ODPS IDE、任务调度、数据分析、报表制作和元数据管理等,可以大大降低用户在数据仓库和商业智能上的实施成本,加快实施进度。天弘基金、高德地图的数据团队基于DPC完成他们的大数据处理需求。

批量计算

一种适用于大规模并行批处理作业的分布式云服务。批量计算可支持海量作业并发规模,系统自动完成资源管理,作业调度和数据加载,并按实际使用量计费。批量计算广泛应用于电影动画渲染,生物数据分析,多媒体转码,金融保险分析等领域。

数据集成

阿里集团对外提供的稳定高效、弹性伸缩的数据同步平台,为阿里云大数据计算引擎(包括ODPS、分析型数据库、OSPS)提供离线(批量)、实时(流式)的数据进出通道。

DDoS防护服务

针对阿里云服务器在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠。免费为阿里云上客户提供最高5G的DDoS防护能力。

安骑士

阿里云推出的一款免费云服务器安全管理软件,主要提供木马文件查杀、防密码暴力破解、高危漏洞修复等安全防护功能。

阿里绿网

基于深度学习技术及阿里巴巴多年的海量数据支撑, 提供多样化的内容识别服务,能有效帮助用户降低违规风险。

安全网络

一款集安全、加速和个性化负载均衡为一体的网络接入产品。用户通过接入安全网络,可以缓解业务被各种网络攻击造成的影响,提供就近访问的动态加速功能。

DDoS高防IP

针对互联网服务器(包括非阿里云主机)在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠。

网络安全专家服务

在云盾DDoS高防IP服务的基础上,推出的安全代维托管服务。该服务由阿里云云盾的DDoS专家团队,为企业客户提供私家定制的DDoS防护策略优化、重大活动保障、人工值守等服务,让企业客户在日益严重的DDoS攻击下高枕无忧。

服务器安全托管

为云服务器提供定制化的安全防护策略、木马文件检测和高危漏洞检测与修复工作。当发生安全事件时,阿里云安全团队提供安全事件分析、响应,并进行系统防护策略的优化。

渗透测试服务

针对用户的网站或业务系统,通过模拟黑客攻击的方式,进行专业性的入侵尝试,评估出重大安全漏洞或隐患的增值服务。

态势感知

专为企业安全运维团队打造,结合云主机和全网的威胁情报,利用机器学习,进行安全大数据分析的威胁检测平台。可让客户全面、快速、准确地感知过去、现在、未来的安全威胁。

云监控

一个开放性的监控平台,可实时监控您的站点和服务器,并提供多种告警方式(短信,旺旺,邮件)以保证及时预警,为您的站点和服务器的正常运行保驾护航。

访问控制

一个稳定可靠的集中式访问控制服务。您可以通过访问控制将阿里云资源的访问及管理权限分配给您的企业成员或合作伙伴。 日志服务

针对日志收集、存储、查询和分析的服务。日志服务可收集云服务和应用程序生成的日志数据并编制索引,提供实时查询海量日志的能力。

开放搜索

解决用户结构化数据搜索需求的托管服务,支持数据结构、搜索排序、数据处理自由定制。 开放搜索为您的网站或应用程序提供简单、低成本、稳定、高效的搜索解决方案。

媒体转码

为多媒体数据提供的转码计算服务。它以经济、弹性和高可扩展的音视频转换方法,将多媒体数据转码成适合在PC、TV以及移动终端上播放的格式。

性能测试

全球领先的SaaS性能测试平台,具有强大的分布式压测能力,可模拟海量用户真实的业务场景,让应用性能问题无所遁形。性能测试包含两个版本,Lite版适合于业务场景简单的系统,免费使用;企业版适合于承受大规模压力的系统,同时每月提供免费额度,可以满足大部分企业客户。

移动数据分析

一款移动App数据统计分析产品,提供通用的多维度用户行为分析,支持日志自主分析,助力移动开发者实现基于大数据技术的精细化运营、提升产品质量和体验、增强用户黏性。 阿里云旗下万网域名,连续19年蝉联域名市场NO.1,近1000万个域名在万网注册!除域名外,提供云服务器、云虚拟主机企业邮箱、建站市场、云解析等服务。2015年7月,阿里云官网与万网网站合二为一,万网旗下的域名、云虚拟主机、企业邮箱和建站市场等业务深度整合到阿里云官网,用户可以网站上完成网络创业的第一步。

大数据数仓项目架构

云上数据仓库解决方案:

离线数仓架构和做

离线数仓特点

基于Serverless的云上数据仓库解决方案

架构特点

实时数仓架构

[图片上传失败...(image-ec3d9a-1629814266849)]

实时数仓架构特点

秒级延迟,实时构建数据仓库,架构简单,传统数仓平滑升级

架构特点

数据仓库的输入数据源和输出系统分别是什么?

输入系统:埋点产生的用户行为数据、JavaEE后台产生的业务数据、个别公司有爬虫数据。

输出系统:报表系统、用户画像系统、推荐系统

1)Apache:运维麻烦,组件间兼容性需要自己调研。(一般大厂使用,技术实力雄厚,有专业的运维人员)

2)CDH:国内使用最多的版本,但 CM不开源,但其实对中、小公司使用来说没有影响(建议使用)10000美金一个节点 CDP

3)HDP:开源,可以进行二次开发,但是没有CDH稳定,国内使用较少

服务器使用物理机还是云主机?

1)机器成本考虑:

(1)物理机:以128G内存,20核物理CPU,40线程,8THDD和2TSSD硬盘,单台报价4W出头,惠普品牌。一般物理机寿命5年左右。

(2)云主机,以阿里云为例,差不多相同配置,每年5W

2)运维成本考虑:

(1)物理机:需要有专业的运维人员(1万*13个月)、电费(商业用户)、安装空调

(2)云主机:很多运维工作都由阿里云已经完成,运维相对较轻松

3)企业选择

(1)金融有钱公司和阿里没有直接冲突的公司选择阿里云(上海)

(2)中小公司、为了融资上市,选择阿里云,拉倒融资后买物理机。

(3)有长期打算,资金比较足,选择物理机。

根据数据规模大家集群

属于 研发部 /技术部/数据部,我们属于 大数据组 ,其他还有后端项目组,前端组、测试组、UI组等。其他的还有产品部、运营部、人事部、财务部、行政部等。

大数据开发工程师=樱棚和大数据组组长=》脊盯项目经理=部门经理=》技术总监

职级就分初级,中级,高级。晋升规则不一定,看公司效益和职位空缺。

京东:T1、T2应届生;T3 14k左右 T4 18K左右 T5 24k-28k左右

阿里:p5、p6、p7、p8

小型公司(3人左右):组长1人,剩余组员无明确分工,并且可能兼顾javaEE和前端。

中小型公司(3~6人左右):组长1人,离线2人左右,实时1人左右(离线一般多于实时),组长兼顾和javaEE、前端。

中型公司(5 10人左右):组长1人,离线3 5人左右(离线处理、数仓),实时2人左右,组长和技术大牛兼顾和javaEE、前端。

中大型公司(10 20人左右):组长1人,离线5 10人(离线处理、数仓),实时5人左右,JavaEE1人左右(负责对接JavaEE业务),前端1人(有或者没有人单独负责前端)。(发展比较良好的中大型公司可能大数据部门已经细化拆分,分成多个大数据组,分别负责不同业务)

上面只是参考配置,因为公司之间差异很大,例如ofo大数据部门只有5个人左右,因此根据所选公司规模确定一个合理范围,在面试前必须将这个人员配置考虑清楚,回答时要非常确定。

IOS多少人 安卓多少人 前端多少人 JavaEE多少人 测试多少人

(IOS、安卓) 1-2个人 前端1-3个人; JavaEE一般是大数据的1-1.5倍,测试:有的有,有的没有。1个左右。 产品经理1个、产品助理1-2个,运营1-3个

公司划分:

0-50 小公司

50-500 中等

500-1000 大公司

1000以上 大厂 领军的存在

转自:

阿里云odps是什么?

什么是ODPS(一)

阿里云开放数据处理服务(Open Data Processing Service,简称ODPS) 是构建在飞天系统上的大规模分布式数据处理服务。

ODPS以REST API的形式,支持用户提交类SQL的查询语言,对睁洞海量数据进行处理。在API之上,还提供SDK开发包和命令行工具,Aliyun.com上还有一个Web演示界面。

什么是ODPS(二)

与传统数据仓库工具相比ODPS有以下优势:

处理能力强大:后面提到的“应用案例一”和“应用案例二”和“应用案例五”的客户都曾经购买使用过传统数据仓库技术解决方案,但是都无法适应剧烈膨胀的数据规模。

成本低廉,伸缩灵活:由于云计算的业务特点,用户可以根据自己的实际需求租用相应的计算能力。同时节省昂贵的运营费用。后面提到的“应用案例四” 和“应用案例五”的 客户的支出,是与其网站业务量,以及产品线复杂程度一起增长的。

什么是ODPS(三)

与HIVE、Big Query相比ODPS有以下特点:

企业级特征:定制化ETL、窗口函数、存储过程、作业调度、M\R、UDF等。

项目支撑:项目空间和帐号搭培授权机制(Project/ User/Role/ACL)。Quota和Priority的管理。

Web Service: RESTful API、多语言SDK、事件订阅。

ODPS与RDS、OTS的区别(一)

阿里云关系型数据库服务(Relational Database Service,简称RDS)是构建在弹性计算系统上的商用关系型数据库服务。

RDS适合较小数据规模的常规OLTP(online transactional processing)应用。如果用户的需求是把现有关系数据库服务(例如MySQL和SQL Server)迁移到云平台上, 主要重视兼容性,可以选择RDS。

ODPS与RDS、OTS的区别(二)

阿里云开放结构化数据服务(Open Table Service,简称OTS)是构建在飞天系统之上的海量结构化和半结构化数据存储与实时查询的服务。

OTS服务的特点是大规模、低延时、强一致,其适用场景悉枝枯是对数据规模和实时性要求高的应用。

ODPS与RDS、OTS的区别(三)

ODPS重点面向数据量大(TB级别)且实时性要求不高的OLAP(On-Line Analytical Processing),适用于构建数据仓库、海量数据统计、数据挖掘、数据商业智能等应 用。

OTS和ODPS可以配合使用,前者支撑大规模并发的日常访问(例如铁路售票前台系统),然后每隔24小时就把交易数据推入ODPS支撑的数据仓库,利用后者进行进一步 的业务分析。

7.阿里大数据——大数据建模

数据模型就是数据组织和存储方法,它强调从业务、数据存取和使用角度合理存储数据。

适合业务和基础数据存储环境的模型,大数据能获得以下好处:

大数据系统需要数据模型方法来帮助更好的组织和存储数据,以便在性能、成本、效率和质量之间取得最佳平衡。

不管是Hadoop、Spark还是阿里巴巴集团的MaxCompute系统,仍然在大规模使用SQL进行数据的加工和处理,仍然在用Table存储数据,仍然在使用棚核关系理论描述数据之间的关系,只是在大数据领域,基于其数据存取的特点在关系数据模型的范式上有了不同的选择而已。

从全企业的高度设计一个3NF模型,用实体关系(Entity Relationship,ER)模型描述企业业务,在范式理论上符合3NF。数据仓库中的3NF与OLTP中不同过,链码掘有以下特点:

ER模型建设数据仓库的出发点是整合数据,为数据分析决策服务。建模步骤分为三个阶段:

维度建模从分析决策的需求出发构建模型,为分析需求服务,因此它重点关注用户如何更快速地完成需求分析,同时具有较好的大规模复杂查询的响应性能。其典型代表事星形模型,以及在一些特殊场景下使用的雪花模型。其设计步骤如下:

它是ER模型的衍生,其设计的出发点也是为了实现数据的整合,但不能直接用于数据分模握析决策。它强调建立一个可审计的基础数据层,也就是强调数据的历史性、可追溯性和原子性,而不要求对数据进行过度的一致性处理和整合。该模型由一下几部分组成:

Anchor对Data Vault模型做了进一步规范化处理,设计的初衷是一个高度可扩展的模型,其核心思想是所有的扩展只是添加而不是修改,因此将模型规范到6NF,基本变成了k-v结构化模型。组成如下:

经历了多个阶段:

上一篇:阿里云的vps(阿里云的域名是干什么用的)
下一篇:怎么配置虚拟主机(配置虚拟主机的语句)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~